Ecosystem Integration¶
System Ecosystem¶
The FFG Pipeline operates within a broader data ecosystem, integrating with multiple systems and serving various stakeholders.
Integration Architecture¶
graph TB
subgraph "Upstream Systems"
A1[SAP ERP]
A2[Retail Partners]
A3[MDM System]
A4[Price Management]
end
subgraph "FFG Pipeline"
B1[Data Ingestion]
B2[Processing Engine]
B3[Data Lake]
end
subgraph "Downstream Systems"
C1[Power BI]
C2[Planning Systems]
C3[Reporting Tools]
C4[Analytics Platform]
end
subgraph "Support Systems"
D1[Azure Key Vault]
D2[Power Automate]
D3[Monitoring]
D4[Alerting]
end
A1 --> B1
A2 --> B1
A3 --> B1
A4 --> B1
B2 --> B3
B3 --> C1
B3 --> C2
B3 --> C3
B3 --> C4
D1 -.-> B2
D2 -.-> B2
D3 -.-> B2
D4 -.-> B2
Upstream Systems¶
SAP ERP System¶
Integration Type: Direct SQL Query
- Tables: pl_global (profit & loss data)
- Frequency: Daily extraction
- Data Volume: ~10M records/month
- Key Fields: posting_date, material_key, amount_lc
Retail Partner Systems¶
Integration Type: File Upload
- Format: Excel files (Coty_DSA_Price_Promo_Data.xlsx)
- Delivery: Manual/automated upload to Azure
- Frequency: Weekly/monthly
- Validation: Schema validation, data quality checks
Master Data Management (MDM)¶
Integration Type: SQL Database Views
Connected MDM domains: - Material Master: Product attributes - Customer Master: Customer hierarchies - Brand Hierarchies: House/Brand relationships - Geographic Data: Reporting units, regions
Price Management System¶
Integration Type: File Upload
- RSP Database: Recommended selling prices
- Floor Prices: Minimum price thresholds
- Update Frequency: Monthly
- Currency: Multi-currency with FX conversion
Core Pipeline Components¶
Azure Blob Storage¶
Role: Primary data staging area
Structure:
domain-finance-ffg/
├── mapping_files/
│ ├── incoming/
│ ├── processed/
│ └── archive/
├── sellout_data/
│ ├── incoming/
│ ├── processed/
│ └── archive/
├── rsp_database/
│ ├── incoming/
│ ├── processed/
│ └── archive/
└── logs/
└── refresh_completed/
Databricks Platform¶
Role: Processing engine and data lakehouse
Components: - Spark Clusters: Auto-scaling compute - SQL Warehouse: Query engine - Delta Lake: Storage layer - Jobs: Scheduled orchestration
SQL Data Warehouse¶
Role: Analytical data store
Schemas:
- dm_finance_ffg
: FFG-specific tables
- gold_finance
: Enterprise finance data
- gold_mdm
: Master data
Downstream Systems¶
Power BI¶
Integration: Direct Query / Import
Datasets: - Sales Performance Dashboards - Price Corridor Analysis - Ventilation Reports - KPI Scorecards
Connection: - SQL endpoint for live queries - Scheduled refresh for imported data - Row-level security implementation
Planning & Forecasting¶
Integration: Table exports
Use cases: - Demand planning inputs - Price optimization - Promotional planning - Budget allocation
Reporting Tools¶
Integration: SQL views and APIs
Reports: - Financial statements - Sales analytics - Market performance - Competitive analysis
Advanced Analytics¶
Integration: Data science workspace
Applications: - Predictive modeling - Anomaly detection - Trend analysis - Optimization algorithms
Support Systems¶
Azure Key Vault¶
Role: Secrets management
Stored credentials: - Service principal credentials - Database connection strings - API keys - Storage account keys
Integration:
Power Automate¶
Role: Workflow automation
Workflows: - Pipeline completion notifications - Error alerting - File arrival triggers - Report distribution
Webhook integration:
webhook_url = config.POWER_AUTOMATE_WEBHOOK_URL
payload = {"status": "completed", "timestamp": timestamp}
response = requests.post(webhook_url, json=payload)
Monitoring & Logging¶
Application Insights¶
- Performance metrics
- Error tracking
- Custom events
- Dependency mapping
Log Analytics¶
- Centralized logging
- Query capabilities
- Alert rules
- Dashboard creation
Alerting System¶
Alert channels: - Email notifications - Slack integration (#ffg-pipeline) - Teams notifications - PagerDuty (critical)
Alert types: - Pipeline failures - Data quality issues - Performance degradation - SLA breaches
Data Governance¶
Data Catalog¶
Tool: Azure Purview
Capabilities: - Data discovery - Lineage tracking - Classification - Glossary management
Access Control¶
Implementation: RBAC + ACLs
Levels: - Storage account (Azure RBAC) - Database/Schema (Databricks) - Table/Column (Fine-grained) - Row-level (Power BI)
Compliance¶
Standards: GDPR, SOX
Controls: - Data encryption - Audit logging - Retention policies - PII handling
External Integrations¶
Cloud Services¶
- Azure Active Directory: Authentication
- Azure Monitor: Infrastructure monitoring
- Azure DevOps: CI/CD pipelines
- Azure Cost Management: Usage tracking
Third-Party Tools¶
- Git: Version control
- JIRA: Issue tracking
- Confluence: Documentation
- ServiceNow: Incident management
Integration Patterns¶
File-Based Integration¶
# Pattern for file processing
def process_incoming_file(file_path):
df = load_file(file_path)
df_processed = transform(df)
write_to_lake(df_processed)
archive_file(file_path)
API Integration¶
# Pattern for API calls
def fetch_from_api(endpoint, params):
response = requests.get(endpoint, params=params)
data = response.json()
return spark.createDataFrame(data)
Database Integration¶
Performance Considerations¶
Data Transfer Optimization¶
- Compression for file transfers
- Incremental data loads
- Parallel processing
- Connection pooling
Caching Strategy¶
- Frequently accessed reference data
- Intermediate results
- Lookup tables
- Aggregated metrics
Security Integration¶
Network Security¶
- Private endpoints
- Network isolation
- Firewall rules
- VPN connections
Data Security¶
- Encryption in transit (TLS)
- Encryption at rest
- Key rotation
- Data masking
Disaster Recovery¶
Backup Strategy¶
- Daily snapshots
- Geo-redundant storage
- Point-in-time recovery
- Retention policies
Failover Process¶
- Primary/secondary regions
- Automatic failover
- Manual intervention points
- Recovery time objectives (RTO)